Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model

نویسندگان

  • I. S. Jung
  • W. H. Jung
  • S. H. Baek
  • S. Kang
چکیده

This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head. Keywords—Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump

Most multi-phase pumps used in crude oil production have been developed to satisfy certain pressure specifications. In the design of these pumps, the flow characteristics of the posterior stage are different from those of the prior stage. For this reason, the design of the second stage needs to be supplemented. To optimize performance in this stage, multi-objective optimization to simultaneousl...

متن کامل

Impeller and volute design and optimization of the centrifugal pump with low specific speed in order to extract performance curves

Now a day centrifugal pumps are vital components of industries. Certainly, one of the most important specifications of centrifugal pumps are the performance curves. In the present work, performance curves of a centrifugal pumps are obtained by Computational fluid dynamics (CFD) and as an outcome, CFD results compare by practical curves. At the first step impeller and volute are designed with tw...

متن کامل

Effect of blade profile on the performance characteristics of axial compressor in design condition

The choice of geometrical shape of the blades has a considerable effect on aerodynamic performance and flow characteristics in axial compressors. In this paper, the effects of the blades shape on the aerodynamic design characteristics are investigated based on Streamline Curvature Method (SCM). Initially, the Streamline Curvature Method (SCM) is used for designing a two-stage axial compressor. ...

متن کامل

Numerical and Experimental Investigation of Cavitation in Axial Pumps

Axial pumps have a wide range of applications, and cavitation is one of the main causes of there performance degradation. So, the present study investigates experimentally and numerically the performance of cavitating axial pumps. In this study a three-dimensional Navier-Stokes code was used (CFDRC, 2004) to model the two-phase flow field around a four blades axial pump. The governing equations...

متن کامل

Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012